

UNG ART DEPT.

MOBILE WEB

APPLICATION
Senior Project

ABSTRACT
The design and implementation details of a mobile
web app.

Jordan Quattlebaum
CSCI 4950 – Senior Project

Contents
... 1

Overview ... 2

Current Webpage .. 2

Requirements for App ... 3

Native vs. Web .. 4

JavaScript Geo-Location API ... 5

Google Maps API ... 8

Database Design .. 8

Administration Area.. 10

JQuery Mobile .. 12

Future Improvements .. 15

Overview

 The UNG Art Department made a request for an iPhone application. It was described as a

“walking tour” app. The purpose of the app would be to provide information about the Outdoor

Sculpture Exhibition on the University’s Dahlonega Campus.

Current Webpage

 The Art Department’s current informational webpage for the exhibition provides a map,

photos of sculptures and artists’ biographies. While the page is informative, it is difficult to

navigate, especially on a mobile device.

 The map provided displays locations for the sculptures in relation to the various buildings

on campus. The locations of the sculptures are indicated with star icons which contain a number.

The map is perfectly suitable for a user familiar with the University campus; however, for users

that are new to the campus or visiting, the map provides little useful information.

 The map is followed by a numbered listing of the sculptures. Each listing displays a

photograph, title and artist name. Users must refer to this list to pinpoint the location of a specific

sculpture on the map, which requires scrolling between the two.

 Artists’ biographies are displayed below the list of sculptures. Again, users most scroll

between the list of sculptures and the artists’ biographies to discern the relation between

sculpture and artist.

 The width property of the webpage is obviously set to a specific numerical value causing

text to be too small to discern on some mobile devices. In order to read the text users can zoom

but this causes long lines of text to extend beyond the right edge of the display area on some

mobile devices.

 While these aspect do not make the site unusable, they do have the potential to cause

frustration for users.

Requirements for App

The desired features for the requested app were:

• display information about the various sculptures

• display a map of the locations of the sculptures

• display the user’s location relative to the sculptures

• alert the user when he or she comes in close proximity to a sculpture

• display artists’ biographies

• provide a means for the art department to easily update the information

Though the request was specifically for an iPhone app, Android phones now make up over fifty

percent of the mobile device market share. It was eventually decided that the app should be

multi-platform in order to appeal to as many users as possible.

Native vs. Web

Building native apps would provide unfettered access to all sensors available on devices,

but considering the fractured nature of the android market share it seemed the possibility of

depending on the presence of any particular sensor would be unwise. That aside, building

natively would provide better performance. After the initial app download, devices would not be

required to have internet access. However, the negative aspects of building natively seemed

overwhelming. The basic functional logic of the app on each platform would be consistent, but

presentation logic could be completely different. It would become necessary to become, at the

very least, familiar with the native API for each type of device. This could be avoided by using a

multi-platform API such as Sencha or PhoneGap, but it would still be necessary to have access to

each type of device for testing purposes.

Building a web-based version of the app seemed to be the most time-efficient choice.

Development and much of the testing could be performed on a PC. The same code would

function nearly the same on all devices with a modern web browser. Furthermore, it would not

be necessary to go through any app store approval processes. The disadvantages of a web-based

app were still significant. Devices would be required to have nearly constant internet access. The

app would have limited access to sensors and be dependent on the capabilities of various web

browsers.

JavaScript Geo-Location API

The JavaScript geo-location API provides functionality to obtain latitude, longitude,

accuracy, altitude, altitude accuracy and heading. A simple page was created using this API and

several different types of devices were tested.

SOURCE CODE FOR JAVASCRIPT GEO-LOCATION TEST PAGE
<html>
 <body>
 <p id="demo">Click the button to get your coordinates:</p>
 <button onclick="getLocation()">Try It</button>
 <script>
 var dir = null;
 var x=document.getElementById("demo");
 function getLocation()
 {
 if (navigator.geolocation){
 navigator.geolocation.watchPosition(showPosition);
 //Get Orientation
 window.addEventListener('deviceorientation', getOrientation);
 }
 else{
 x.innerHTML="Geolocation is not supported by this browser.";}
 }
 function showPosition(position)
 {
 x.innerHTML="Latitude: " + position.coords.latitude +
 "
Longitude: " + position.coords.longitude +
 "
Accuracy: " + position.coords.accuracy +
 "
Altitude: " + position.coords.altitude +
 "
Altitude Accuracy: " + position.coords.altitude +
 "
S";
 }
 function getOrientation(eventData)
 {
 //just care about the compass heading
 var alpha;
 if (event.webkitCompassHeading){
 //this is an iOS device
 alpha = event.webkitCompassHeading;
 }
 else{
 alpha = event.alpha;

 }
 document.getElementById("heading").innerHTML= "Heading: "+alpha;
 }
 </script>
 </body>
</html>

SCREEN CAPTURE OF TEST PAGE ON ANDROID
4.1

SCREEN CAPTURE OF TEST PAGE ON IOS 7

The latitude and longitude of each device could be obtained with an accuracy between

two and five meters when outdoors. Indoors the accuracy could vary greatly, with observed

values between five meters and a few hundred meters.

The altitude and altitude accuracy could be obtained on some devices, but not all. The

devices that did display altitude information were reasonably accurate when compared to

standard GPS devices and accepted values for altitude. However, the altitude accuracy given by

the API was usually close to the actual altitude. For example, the given altitude is 450 meters

with an altitude accuracy of 450 meters. It seems reasonable to assume that this means “the

device is around 450 meters, plus or minus 450 meters,” or the device could be at any altitude

between zero and 900 meters above sea level. Though the observed values returned for altitude

were accurate, it seemed that ultimately the value cannot be trusted to be accurate at all times.

In using the basic JavaScript geo-location API it is possible to obtain heading information

once the device starts moving, which it accomplishes by using previously obtained coordinates to

determine direction of movement. Because of this implementation, the geo-location API is not

able to detect if a user is rotating in place. Therefore, it cannot be used to accurately determine

the direction in which a user is facing. It is possible though, once heading information is

obtained, to rely on the JavaScript accelerometer API to determine further heading information.

If the device is rotated then the heading has changed. The potential problem with this approach is

that several assumptions must be made. First, it must be assumed that the user was holding the

device in a position that is conducive to being viewed when the initial heading information was

obtained, i.e. the top of the screen was in an upward position or the user was looking downward

on the device and the top of the screen was oriented toward the direction of movement. The next

assumption that must be made is that the user will continue to hold the device in the same

relative orientation. If these assumptions are not true then using the accelerometer to track

heading will not work and we must rely on the Geo-location to provide heading information

based on movement. iOS devices can immediately display heading information by using an

Apple WebKit specific extension for JavaScript that makes uses of a device’s compass.

Google Maps API

The Google Maps API was utilized to fulfil the mapping requirements. The API provides

a simple way to display a map within a browser window and also allows for markers to be placed

on the map using latitude and longitude coordinates. Information from the database will be used

to place markers for sculptures while coordinates obtained from the geo-location API will be

used to display a user’s location.

Despite the ease in using the API, there were issues encountered, though it was not a

problem with the API. iOS devices have a “glitch” in which relative sizes are not properly

processed. Setting the height or width of the element that acts as a container for the map to 100%

causes iOS devices to display it much larger than the actual width or height of the screen. This

also caused another realization: iOS 7 imposes a memory limit of 5 megabytes on all apps. The

enormous size of the map easily caused the browser to exceed this limit and caused the browser

to shut down. To avoid this issue, it became necessary to use JavaScript to poll the browser for

the dimensions of the browser window before attempting to display the map.

Database Design

MySQL was chosen as the database system mainly because it is available on most web

servers and is easily accessible with most server side scripting languages. The tables of the

database where constructed with future possible uses in mind. Though the original request from

the art department was for an app for the Outdoor Sculpture Exhibition, the database was

constructed in such a way that the app could easily be used for multiple exhibitions with

numerous attributes. The tables are in third normal form in order to easily allow many-to-many

relations between the different entities. For example, each work of art can be associated with

zero or more exhibitions while at the same time each exhibition can be associated with zero or

more works of art (for the purposes of the database, a work of art is referred to as a “piece”).

This was accomplished by having a separate table, called showpiece, “link” the two entities. This

linking table has two columns, one for the exhibition and one for the piece. A similar table was

used to link artists and exhibitions.

ENTITY RELATION DIAGRAM

 A table was included for galleries in order to allow future exhibitions to be

associated with a specific gallery. This provides a mechanism to allow users to see a map of their

location relative to the gallery.

Administration Area

 In order to provide a means for the art department to update the app, it was necessary to

develop an administration area. This administration area is basically just a web interface that

allows interaction with the database. This interface displays a section for each table in the

database except the showpiece and showartist tables.

ADMINISTRATION AREA – EDITING A PIECE

ADMINISTRATION AREA – EDITING AN EXHIBITION

Administration users can add, edit, and delete rows in any of the tables by going to the

section for that table. Adding or editing an exhibition allows users to associate artists, pieces and

galleries to the exhibition. This is accomplished by allowing users to place a check beside each

artist that they wish to associate with the exhibition. When a piece is selected an entry is made

into the showpiece table with the id of the exhibition and the id of the piece. The same is true of

artists, except the entry is placed in the showartist table. In a similar manner, adding or editing a

piece allows a user to associate an artist. However, since there can be only one artist associated

with each piece, the user is presented with a drop-down list that only allows for one selection to

be made.

Adding or editing a piece displays a map for the administration user to use to help

determine the coordinates of the piece. The user can click a button to set the coordinates to the

user’s current location. Of course, this will only give accurate results if the user is editing the

information from a mobile device. The other option is for the user to drag the marker around on

the map to set the piece’s location.

Currently the administration area is password-protected using an .htaccess file. The major

disadvantage of this method is that it makes it impossible for the art department to add

administrative users or change passwords on existing users without gaining access to the file

structure of the server. Though this is not the most ideal way to implement a password-protected

area, it was the most time-efficient method.

JQuery Mobile

 JQuery Mobile is a JavaScript API that uses the JQuery JavaScript library. The API

provides a means to quickly generate a mobile compatible HTML user interface. The entire GUI

can be developed with simple HTML. The only additional requirement is that the developer add

special data attributes to some of the HTML elements. JQuery then process those data attributes

to add CSS classes to the elements. These CSS classes are then used generate a mobile-

compatible interface.

SOURCE CODE FOR SIMPLE JQUERY MOBILE PAGE
<html>
 <head>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
href="http://code.jquery.com/mobile/1.3.2/jquery.mobile-1.3.2.min.css" />
 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.3.2/jquery.mobile-
1.3.2.min.js"></script>
 </head>
<body>
 <div data-role="page" id="home">
 <div data-role="header" >
 <h1>Title</h1>
 </div>
 <div data-role="content">
 <ul data-role="listview" data-filter="true">

 <h1>Link title</h1>
 <p>Link Description</p>

 </div>
 <div data-role="footer" data-position="fixed">
 <nav data-role="navbar">

 Home
 Map
 Artists
 Pieces

 </nav>
 </div>
 </div>
</body>

 The sample code above illustrates the ease with which a functional mobile-compatible

webpage can be generated with HTML. The following screenshots display the output from the

sample code on an iOS device and an Android device.

 The effort required to generate a GUI for a web app is greatly minimized using a

framework like JQuery Mobile. The API even makes attempts to provide a native-like

experience for users by using AJAX for page loads and keeping previously viewed pages in the

document object model (DOM). This helps prevent unnecessary data usage. However, by using

AJAX, only the content of subsequent pages are loaded. This means that a page cannot contain

page specific JavaScript unless it is the first page loaded. There are two ways to solve this

problem: One way is to disable the AJAX page loads and the other is to have all necessary

JavaScript included on every page.

SAMPLE CODE OUTPUT – ANDROID 4.1 SAMPLE CODE OUTPUT – IOS 7

Future Improvements

 There are features that would improve the user experience in the app, especially in

administration area. One feature that would be extremely useful is to allow image uploads in the

administration area. This is easily accomplished and was not included because of time

constraints. Improvements could also be made in the way in which exhibitions are added and

edited. As the database gets larger and more artists and pieces are added, the check list could

become very unwieldy and cumbersome to use. Perhaps the most important change needed to the

administration area is the way in which the users are authenticated. The most useful method for

doing this would be to have an administration users table to store user names and hashed

passwords. This table could be used to authenticated users as well as give the art department a

means to add new administration users.

Conclusion
 The completed mobile app satisfies all of the requested requirements. Although the

complexity of the project was greater than originally anticipated, in the end the project came

together in a fluid manner. The different APIs used function well together. The finished app is

easily navigable and user friendly for both the front-end and back-end users.

	Overview
	Current Webpage
	Requirements for App
	Native vs. Web
	JavaScript Geo-Location API
	Google Maps API
	Administration Area
	JQuery Mobile
	Future Improvements
	Conclusion

